Internet Protocol
The Internet Protocol (IP) is a protocol used for communicating data across a packet-switched internetwork using the Internet Protocol Suite, also referred to as TCP/IP.
IP is the primary protocol in the Internet Layer of the Internet Protocol Suite and has the task of delivering distinguished protocol datagrams (packets) from the source host to the destination host solely based on their addresses. For this purpose the Internet Protocol defines addressing methods and structures for datagram encapsulation. The first major version of addressing structure, now referred to as Internet Protocol Version 4 (IPv4) is still the dominant protocol of the Internet, although the successor, Internet Protocol Version 6 (IPv6) is being deployed actively worldwide.
IP encapsulation
Data from an upper layer protocol is encapsulated as packets/datagrams (the terms are basically synonymous in IP). Circuit setup is not needed before a host may send packets to another host that it has previously not communicated with (a characteristic of packet-switched networks), thus IP is a connectionless protocol. This is in contrast to public switched telephone networks that require the setup of a circuit for each phone call (connection-oriented protocol).
Services provided by IP
Because of the abstraction provided by encapsulation, IP can be used over a heterogeneous network, i.e., a network connecting computers may consist of a combination of Ethernet, ATM, FDDI, Wi-Fi, token ring, or others. Each link layer implementation may have its own method of addressing (or possibly the complete lack of it), with a corresponding need to resolve IP addresses to data link addresses. This address resolution is handled by the Address Resolution Protocol (ARP) for IPv4 and Neighbor Discovery Protocol (NDP) for IPv6.
Reliability
The design principles of the Internet protocols assume that the network infrastructure is inherently unreliable at any single network element or transmission medium and that it is dynamic in terms of availability of links and nodes. No central monitoring or performance measurement facility exists that tracks or maintains the state of the network. For the benefit of reducing network complexity, the intelligence in the network is purposely mostly located in the end nodes of each data transmission, cf. end-to-end principle. Routers in the transmission path simply forward packets to next known local gateway matching the routing prefix for the destination address.
As a consequence of this design, the Internet Protocol only provides best effort delivery and its service can also be characterized as unreliable. In network architectural language it is a connection-less protocol, in contrast to so-called connection-oriented modes of transmission. The lack of reliability allows any of the following fault events to occur:
- data corruption
- lost data packets
- duplicate arrival
- out-of-order packet delivery; meaning, if packet 'A' is sent before packet 'B', packet 'B' may arrive before packet 'A'. Since routing is dynamic and there is no memory in the network about the path of prior packets, it is possible that the first packet sent takes a longer path to its destination.
IPv6, on the other hand, has abandoned the use of IP header checksums for the benefit of rapid forwarding through routing elements in the network.
The resolution or correction of any of these reliability issues is the responsibility of an upper layer protocol. For example, to ensure in-order delivery the upper layer may have to cache data until it can be passed to the application.
In addition to issues of reliability, this dynamic nature and the diversity of the Internet and its components provide no guarantee that any particular path is actually capable of, or suitable for performing the data transmission requested, even if the path is available and reliable. One of the technical constraints is the size of data packets allowed on a given link. An application must assure that it uses proper transmission characteristics. Some of this responsibility lies also in the upper layer protocols between application and IP. Facilities exist to examine the maximum transmission unit (MTU) size of the local link, as well as for the entire projected path to the destination when using IPv6. The IPv4 internetworking layer has the capability to automatically fragment the original datagram into smaller units for transmission. In this case, IP does provide re-ordering of fragments delivered out-of-order.
Transmission Control Protocol (TCP) is an example of a protocol that will adjust its segment size to be smaller than the MTU. User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) disregard MTU size thereby forcing IP to fragment oversized datagrams.
IP addressing and routing
Perhaps the most complex aspects of IP are IP addressing and routing. Addressing refers to how end hosts become assigned IP addresses and how subnetworks of IP host addresses are divided and grouped together. IP routing is performed by all hosts, but most importantly by internetwork routers, which typically use either interior gateway protocols (IGPs) or external gateway protocols (EGPs) to help make IP datagram forwarding decisions across IP connected networks
0 Response to "Internet Protocol"
Posting Komentar