Compressions and Error Correction

Operations at these speeds pushed the limits of the phone lines, resulting in high error rates. This led to the introduction of error correction systems built into the modems, made most famous with Microcom's MNP systems. A string of MNP standards came out in the 1980s, each increasing the effective data rate by minimizing overhead, from about 75% theoretical maximum in MNP 1, to 95% in MNP 4. The new method called MNP 5 took this a step further, adding data compression to the system, thereby increasing the data rate above the modem's rating. Generally the user could expect an MNP5 modem to transfer at about 130% the normal data rate of the modem. Details of MNP were later released and became popular on a series of 2,400-bit/s modems, and ultimately led to the development of V4.2 and V4.2bis ITU standards. V.42 and V.42bis were non-compatible with MNP but were similar in concept: Error correction and compression.

Another common feature of these high-speed modems was the concept of fallback, or speed hunting, allowing them to talk to less-capable modems. During the call initiation the modem would play a series of signals into the line and wait for the remote modem to respond to them. They would start at high speeds and progressively get slower and slower until they heard an answer. Thus, two USR modems would be able to connect at 9,600 bit/s, but, when a user with a 2,400-bit/s modem called in, the USR would fallback to the common 2,400-bit/s speed. This would also happen if a V.32 modem and a HST modem were connected. Because they used a different standard at 9,600 bit/s, they would fall back to their highest commonly supported standard at 2,400 bit/s. The same applies to V.32bis and 14,400 bit/s HST modem, which would still be able to communicate with each other at only 2,400 bit/s.

Read Users' Comments (0)

0 Response to "Compressions and Error Correction"

Posting Komentar